Письменные приемы сложения и вычитания многозначных чисел
Познание 21 век - все об образовании и школах

Письменные приемы сложения и вычитания многозначных чисел


адреса школ

учебное

новости науки

реклама

Тип урока: ОНЗ

Основные цели:

  1. сформировать способность к выполнению сложения и вычитания многозначных чисел в столбик;
  2. повторить устную и письменную нумерацию и сравнение многозначных чисел, соотношение между разрядными единицами;
  3. тренировать вычислительные навыки (сложение и вычитание), навык составления буквенных выражений по тексту задач. Мыслительные операции необходимые на этапе проектирования: анализ, сравнение, аналогия, обобщение.

Демонстрационный материал:

Раздаточный материал:

1) индивидуальные карточки к этапу 2:

2) опорные схемы письменного сложения и вычитания многозначных чисел (памятки) — (см. Д–5 (а, б));

3) сигналы обратной связи: веселая и задумчивая «рожицы»: .

Ход урока

1. Самоопределение к учебной деятельности.

Цель:

Организация учебного процесса на этапе 1.

На одной из створок доски с обратной стороны — запись:

Школа – это детская страна, где много света и тепла, где много счастья и добра.

(На мониторинге меняются слайды).

Здесь же нарисован рисунок, изображающий восхождение к вершине знаний (можно мелом на доске). На листках написаны темы предыдущих уроков.

Учитель предлагает прочитать высказывание.

- Вы согласны? (Да и нет. Бывает трудно и грустно. И т.д.)

- Как вы думаете, что надо сделать, чтобы учение было не в тягость, а в радость? (...) 

- А чтобы на каждом уроке подниматься к вершине радости, надо помнить, какие трудности уже преодолели. Скажите, что мы уже знаем и умеем?

Дети читают на картинке темы предыдущих уроков.

- Вспомните, закончили мы изучение многозначных чисел? Почему вы так считаете?

(Пока нет, еще не изучали действий с числами, ...) Сегодня мы продолжим работу над многозначными числами.

2. Актуализация знаний и затруднение в индивидуальной деятельности.

Цель:

Организация учебного процесса на этапе 2:

1) Чтение и запись многозначных чисел.

- Запишите числа (под диктовку):

а) 5 млн 6 тыс. 72;

б) 2 млрд 34 млн 1;

в) 7 млрд 409 тыс.

Дети работают на индивидуальных карточках Р–1. Один ученик в это время выкладывает числа в нумерационной таблице Д–1 с названием разрядов и классов.

Учитель выставляет на доске опорную схему Д–2 для чтения многозначного числа и карточки Д-3. Вопросы для организации фронтального опроса:

- Сколько единиц в разряде сотен тысяч в I числе? Во II числе? В III числе? (В I числе 0 сотен тысяч; во II числе — 0 сотен тысяч; в III числе — 4 сотни тысяч.) 

- На что похожа запись каждого класса многозначного числа? (На запись трехзначного числа.) 

- А чем отличается? (В каждом классе многозначного числа, кроме старшего, записываются все три цифры, а в трехзначных числах 0 впереди не пишется – получается двузначное или однозначное число. 

- Что обозначает цифра 0 в записи числа? (Единицы разряда, в котором стоит цифра 0, отсутствуют.)  

- Назовите отсутствующие разрядные единицы I числа. (Единицы отсутствуют в разрядах: сотен тысяч, десятков тысяч, сотен класса единиц.) 

- Сколько сотен в одной тысяче? (10 сотен.) Почему? (Каждая единица содержит 10 единиц младшего разряда.) 

- Сколько десятков тысяч в 1 сотне тысяч? (10 десятков тысяч.) Почему? (10 единиц каждого разряда образуют 1 единицу старшего разряда.)

2) Учитель помещает на доску алгоритм сравнения многозначных чисел Д–6. 

- Что общего в записях? (Это задания на сравнение многозначных чисел. 

- Сравните числа, пользуясь алгоритмом.

Задание записано так же на доске. Ученик у доски вставляет нужные знаки и объясняет свой выбор:

3) Индивидуальное задание.

Задание выполняется самостоятельно на время — 1–2 минуты. Стоп! Положите ручки. Назовите ваши ответы. Учитель записывает возможные варианты ответов на доске.

В случае несовпадения ответов в первых двух примерах, дети проговаривают соответствующий вычислительный прием. Учитель выставляет на доске эталоны сложения и вычитания трехзначных чисел Д–4. В последних двух примерах дети либо вообще не успеют выполнить действия, либо в ответах будут большие разногласия.

- Каким правилом или алгоритмом воспользуетесь, чтобы определить, кто прав. (Такого правила у нас нет.)

3. Постановка проблемы.

Цель:

Организация учебного процесса на этапе 3:

4. Проектирование и фиксация нового знания.

Цель:

Организация учебного процесса на этапе 4.

Варианты обоснований, представленные детьми, могут быть, например, такими:

При необходимости задаются опорные вопросы, используется помощь класса. В ходе этого обсуждения учащиеся должны согласовать следующий вариант эталонов сложения и вычитания многозначных чисел:

В результате учащиеся должны сделать вывод о том, что приемы сложения и вычитания многозначных чисел аналогичны приемам сложения и вычитания трехзначных чисел: смысл действий остается тем же, но увеличивается количество разрядов.

В ходе всего урока опорные схемы сложения и вычитания многозначных чисел остаются на доске.

- Теперь мы сможем решить те примеры, которые у нас не получились вначале?

Два ученика по вызову учителя комментируют решение примеров, вызвавших затруднение на этапе 2, используя опорные схемы. Проблема урока разрешена.

5. Первичное закрепление.

Цель: зафиксировать приемы письменного сложения и вычитания многозначных чисел во внешней речи.

Организация учебного процесса на этапе 5.

1) 364 (1- верхнюю строчку), стр.67– работа в парах.

Запишите ответы в примерах, комментируя свои действия в парах. Если встретятся ошибки в объяснении, сосед на них укажет. Каждый объясняет по одному примеру.

Проверим ответы: 634922, 298784

2) работа в парах.

Прочитайте задание. (Незнайка, Буратино и Винни-Пух решали пример 683 159 – 2304. Проверь их записи и решение, найди ошибки.)

Обсудите с соседом, как решали один и тот же пример сказочные персонажи. Кто из них решил правильно? Кто ошибся? В чем заключается ошибка? У себя в тетрадях запишите правильное решение. (2 мин.)

Расскажите о своих наблюдениях. (Правильного решения нет. Незнайка и Буратино ошиблись в записи чисел в столбик: Незнайка записал единицы под сотнями, а Буратино – под десятками. Правильного решения у них быть не может. Винни-Пух записал пример верно, но ошибся в вычислениях: он забыл, что из разряда единиц тысяч он перевел 1 тыс. в разряд сотен, и в разряде единиц тысяч осталось не 3 тыс., а 2 тыс. При вычислении получится: 2 тыс. – 2 тыс. = 0.)

Вы правильно указали ошибки сказочных героев. А какое решение записали вы?

Один ученик комментирует у доски:

6. Самоконтроль с самопроверкой по эталону.

Цель:

Организация учебного процесса на этапе 6:

Обратите внимание на запись 1-го примера 2-го столбика. Что заметили? (Для удобства записи слагаемые поменяли местами.)

Рядом с каждым примером, где у вас получилось по-другому, поставьте знак «?». Выделите место расхождения красным карандашом. Где и в чем ошибка?

7. Включение нового содержания в систему знаний и повторение.

Цель:

Организация учебного процесса на этапе 7.

1) Решение уравнений с использованием приемов сложения и вычитания многозначных чисел.

Мы неплохо справились с решением примеров на сложение и вычитание многозначных чисел. А где на практике можно встретиться с этими приемами? (При решении уравнений и задач.)

Попробуем применить наши знания при решении уравнений?

Один ученик работает на скрытой доске, остальные – в тетрадях. После выполнения работы сверяют записи, обсуждают работу у доски

Как убедиться в правильности решения? (Проверить.)

Выполните проверку, записывая решение в столбик.

2) – соревнование.(на выбор 3 задания: №365, №366, зад.на карточках )

Мы совсем не работали на уроке над задачами, а потренироваться надо. Как быть? (Учащиеся предлагают свои варианты выбора задач для решения.)

Давайте проведем игру-соревнование — «Блицтурнир». Я выставлю на доске таблички с выражениями. Тот, кто первый выполнит задание, выбирает нужную табличку и обосновывает решение. (Карточки Д-9)

Обоснование решения может быть, например, таким:

а) Известно, что банан стоит a руб., а ананас на b руб. дороже. Надо узнать, во сколько раз банан дешевле ананаса. Чтобы узнать, во сколько раз одна величина больше второй, надо значение большей величины надо разделить на значение меньшей величины.

Но значение большей величины неизвестно. Но его можно найти, так как по условию оно на b больше, чем a. Значит, оно равно .

Тогда для ответа на вопрос надо сумму a + b разделить на а: .

б) Известно, что c руб. можно купить 5 кг яблок. Требуется узнать, сколько рублей надо заплатить за 8 кг таких же яблок.

Задача на приведение к единице – прямая. Сначала узнаем цену 1 кг яблок:        , а потом умножим ее на количество килограммов яблок: .

(проверяем другие задачи)

Оцените свою работу с помощью знаков «+» и «?».

Обозначьте место ошибки, поработайте дополнительно над задачами такого типа.

8. Рефлексия учебной деятельности на уроке.

Цель:

Организация учебного процесса на этапе 8.

Домашнее задание:

 

- Спасибо за урок!

Оставьте свой отзыв с помощью аккаунта ВК:
Оставьте свой отзыв с помощью аккаунта FB:

 
Автономная некоммерческая организация
средняя общеобразовательная школа "Познание - XXI век" в Новокосино.
111672, г. Москва, ул. Новокосинская, д. 15, корп. 7. Тел. (916) 148-4547 .
E-mail: poznanie21@yandex.ru