Письменные приемы сложения и вычитания многозначных чисел
Познание 21 век - все о науке, образовании и школах

Письменные приемы сложения и вычитания многозначных чисел

Поддержите сайт - подпишитесь на канал в Яндекс.Дзене!

Тип урока: ОНЗ

Основные цели:

  1. сформировать способность к выполнению сложения и вычитания многозначных чисел в столбик;
  2. повторить устную и письменную нумерацию и сравнение многозначных чисел, соотношение между разрядными единицами;
  3. тренировать вычислительные навыки (сложение и вычитание), навык составления буквенных выражений по тексту задач. Мыслительные операции необходимые на этапе проектирования: анализ, сравнение, аналогия, обобщение.

Демонстрационный материал:

  • нумерационная таблица с названиями разрядов и классов и «карманами» для цифр
  • опорная схема для чтения многозначного числа
  • Карточки-памятки о правилах нумерации многозначных чисел
  • опорные схемы письменного сложения и вычитания трёхзначных чисел
  • опорные схемы письменного сложения и вычитания многозначных чисел:
    а) без перехода через разряд
    б) с переходом через разряд
  • алгоритм для сравнения многозначных чисел (Д–5, урок 19);
  • таблички для этапов 1 и 8
  • эталон для самопроверки на этапе 6: опорная схема письменного сложения и вычитания многозначных чисел Д–5.
  • таблицы с буквенными выражениями к этапу 7:

Раздаточный материал:

1) индивидуальные карточки к этапу 2:

2) опорные схемы письменного сложения и вычитания многозначных чисел (памятки) — (см. Д–5 (а, б));

3) сигналы обратной связи: веселая и задумчивая «рожицы»: .

Ход урока

1. Самоопределение к учебной деятельности.

Цель:

  • мотивировать учащихся к деятельности на уроке через блицопрос, отражающий личный опыт детей;
  • определить содержательные рамки урока: продолжить работу над многозначными числами.

Организация учебного процесса на этапе 1.

На одной из створок доски с обратной стороны — запись:

Школа – это детская страна, где много света и тепла, где много счастья и добра.

(На мониторинге меняются слайды).

Здесь же нарисован рисунок, изображающий восхождение к вершине знаний (можно мелом на доске). На листках написаны темы предыдущих уроков.

Учитель предлагает прочитать высказывание.

- Вы согласны? (Да и нет. Бывает трудно и грустно. И т.д.)

- Как вы думаете, что надо сделать, чтобы учение было не в тягость, а в радость? (...) 

- А чтобы на каждом уроке подниматься к вершине радости, надо помнить, какие трудности уже преодолели. Скажите, что мы уже знаем и умеем?

Дети читают на картинке темы предыдущих уроков.

- Вспомните, закончили мы изучение многозначных чисел? Почему вы так считаете?

(Пока нет, еще не изучали действий с числами, ...) Сегодня мы продолжим работу над многозначными числами.

2. Актуализация знаний и затруднение в индивидуальной деятельности.

Цель:

  • актуализировать знания устной и письменной нумерации многозначных чисел, разрядного состава числа, соотношения между соседними разрядными единицами;
  • тренировать устные приёмы сложения и вычитания, мыслительные операции анализ, сравнение, обобщение, аналогия;
  • зафиксировать индивидуальное затруднение, возникшее при сложении и вычитании многозначных чисел (трудно быстро и правильно выполнить сложение и вычитание многозначных чисел).

Организация учебного процесса на этапе 2:

1) Чтение и запись многозначных чисел.

- Запишите числа (под диктовку):

а) 5 млн 6 тыс. 72;

б) 2 млрд 34 млн 1;

в) 7 млрд 409 тыс.

Дети работают на индивидуальных карточках Р–1. Один ученик в это время выкладывает числа в нумерационной таблице Д–1 с названием разрядов и классов.

Учитель выставляет на доске опорную схему Д–2 для чтения многозначного числа и карточки Д-3. Вопросы для организации фронтального опроса:

- Сколько единиц в разряде сотен тысяч в I числе? Во II числе? В III числе? (В I числе 0 сотен тысяч; во II числе — 0 сотен тысяч; в III числе — 4 сотни тысяч.) 

- На что похожа запись каждого класса многозначного числа? (На запись трехзначного числа.) 

- А чем отличается? (В каждом классе многозначного числа, кроме старшего, записываются все три цифры, а в трехзначных числах 0 впереди не пишется – получается двузначное или однозначное число. 

- Что обозначает цифра 0 в записи числа? (Единицы разряда, в котором стоит цифра 0, отсутствуют.)  

- Назовите отсутствующие разрядные единицы I числа. (Единицы отсутствуют в разрядах: сотен тысяч, десятков тысяч, сотен класса единиц.) 

- Сколько сотен в одной тысяче? (10 сотен.) Почему? (Каждая единица содержит 10 единиц младшего разряда.) 

- Сколько десятков тысяч в 1 сотне тысяч? (10 десятков тысяч.) Почему? (10 единиц каждого разряда образуют 1 единицу старшего разряда.)

2) Учитель помещает на доску алгоритм сравнения многозначных чисел Д–6. 

- Что общего в записях? (Это задания на сравнение многозначных чисел. 

- Сравните числа, пользуясь алгоритмом.

Задание записано так же на доске. Ученик у доски вставляет нужные знаки и объясняет свой выбор:

  • В числе 4308 единиц тысяч столько же, сколько в числе 4083, а сотен — больше (3 > 0), поэтому: 4308 > 4083.
  • В числе 94 809 пять разрядных единиц, а в числе 9999 только четыре. Поэтому: 94 809 > 9999.
  • В одной тысяче содержится 10 сотен, поэтому: 1 тыс. = 10 с.

3) Индивидуальное задание.

Задание выполняется самостоятельно на время — 1–2 минуты. Стоп! Положите ручки. Назовите ваши ответы. Учитель записывает возможные варианты ответов на доске.

В случае несовпадения ответов в первых двух примерах, дети проговаривают соответствующий вычислительный прием. Учитель выставляет на доске эталоны сложения и вычитания трехзначных чисел Д–4. В последних двух примерах дети либо вообще не успеют выполнить действия, либо в ответах будут большие разногласия.

- Каким правилом или алгоритмом воспользуетесь, чтобы определить, кто прав. (Такого правила у нас нет.)

3. Постановка проблемы.

Цель:

  • выявить и зафиксировать отличительное свойство задания, вызвавшего затруднение в учебной деятельности: устные вычисления с многозначными числами затруднительны;
  • согласовать цель и тему урока.

Организация учебного процесса на этапе 3:

  • Какое правило здесь нужно? (Правило сложения и вычитания натуральных чисел.)
  • Так они же выставлены на доске! (Эти правила касаются только сложения и вычитания трехзначных чисел, а у нас — действия с многозначными числами.)
  • Значит, какую цель нам надо поставить перед собой? (Научиться складывать и вычитать многозначные числа.)
  • Назовите тему урока. (Сложение и вычитание многозначных чисел.)
  • Учитель записывает (или открывает) тему урока: «Сложение и вычитание многозначных чисел».

4. Проектирование и фиксация нового знания.

Цель:

  • вывести способ сложения и вычитания многозначных чисел в столбик на основе изученных приемов сложения и вычитания трехзначных чисел;
  • зафиксировать новый способ действий в речи и знаково.

Организация учебного процесса на этапе 4.

  • В чем различия между трехзначными и многозначными числами? (Больше разрядных единиц.)
  • Изменяется ли способ образования старшего разряда при увеличении количества разрядов? (Нет, 10 единиц любого разряда образуют 1 единицу следующего разряда.)
  • Значит, как удобно записывать числа при письменном сложении и вычитании? (В столбик, разряд под разрядом.)
  • Закончите опорные схемы сложения и вычитания в столбик для многозначных чисел:
    - первый случай – общий, без перехода через разряд;
    - второй – когда при сложении в некоторых разрядах получается число, большее 9 (на картинке эти разряды выделены цветом);
    - третий – при вычитании не достает единиц какого-то разряда (данный разряд выделен точкой);
    - четвертый – при вычитании в уменьшаемом единицы некоторых разрядов отсутствуют (в данных разрядах записаны нули).
  • Случаи сложения и вычитания можно обсудить с учащимися фронтально, а работу по составлению эталонов завершить в группах (каждой группе предлагается для обдумывания один из случаев, на работу отводится 1–2 мин). Затем варианты, предложенные группами, обсуждаются фронтально.

Варианты обоснований, представленные детьми, могут быть, например, такими:

  • Вариант 1: При сложении и вычитании без перехода через разряд записываем числа одно под другим поразрядно и выполняем действия по порядку, начиная с низшего разряда.
  • Вариант 2: Если при сложении в каком-либо разряде получается число большее 9, то в данном разряде суммы пишем количество единиц получившегося двузначного числа, а к следующему более крупному разряду прибавляем единицу.
  • Вариант 3: При вычитании может не доставать единиц какого-то разряда. Тогда берем единицу более крупного разряда, дробим ее на 10 единиц низшего разряда и прибавляем их к имеющимся единицам. Не забываем, что у более крупного разряда единиц стало на 1 меньше.
  • Вариант 4: Единицы некоторых разрядов отсутствуют. В этом случае тоже берем единицу более крупного разряда, дробим ее распределяем в низших разрядах – по 9, а в тот разряд, где выполняется вычитание – 10. При этом не забываем, что у более крупного разряда единиц стало на 1 меньше.

При необходимости задаются опорные вопросы, используется помощь класса. В ходе этого обсуждения учащиеся должны согласовать следующий вариант эталонов сложения и вычитания многозначных чисел:

В результате учащиеся должны сделать вывод о том, что приемы сложения и вычитания многозначных чисел аналогичны приемам сложения и вычитания трехзначных чисел: смысл действий остается тем же, но увеличивается количество разрядов.

В ходе всего урока опорные схемы сложения и вычитания многозначных чисел остаются на доске.

- Теперь мы сможем решить те примеры, которые у нас не получились вначале?

Два ученика по вызову учителя комментируют решение примеров, вызвавших затруднение на этапе 2, используя опорные схемы. Проблема урока разрешена.

5. Первичное закрепление.

Цель: зафиксировать приемы письменного сложения и вычитания многозначных чисел во внешней речи.

Организация учебного процесса на этапе 5.

1) 364 (1- верхнюю строчку), стр.67– работа в парах.

Запишите ответы в примерах, комментируя свои действия в парах. Если встретятся ошибки в объяснении, сосед на них укажет. Каждый объясняет по одному примеру.

Проверим ответы: 634922, 298784

2) работа в парах.

Прочитайте задание. (Незнайка, Буратино и Винни-Пух решали пример 683 159 – 2304. Проверь их записи и решение, найди ошибки.)

Обсудите с соседом, как решали один и тот же пример сказочные персонажи. Кто из них решил правильно? Кто ошибся? В чем заключается ошибка? У себя в тетрадях запишите правильное решение. (2 мин.)

Расскажите о своих наблюдениях. (Правильного решения нет. Незнайка и Буратино ошиблись в записи чисел в столбик: Незнайка записал единицы под сотнями, а Буратино – под десятками. Правильного решения у них быть не может. Винни-Пух записал пример верно, но ошибся в вычислениях: он забыл, что из разряда единиц тысяч он перевел 1 тыс. в разряд сотен, и в разряде единиц тысяч осталось не 3 тыс., а 2 тыс. При вычислении получится: 2 тыс. – 2 тыс. = 0.)

Вы правильно указали ошибки сказочных героев. А какое решение записали вы?

Один ученик комментирует у доски:

6. Самоконтроль с самопроверкой по эталону.

Цель:

  • тренировать способность к самоконтролю и самооценке;
  • проверить свое умение использовать прием письменного сложения и вычитания многозначных чисел на основе сопоставления собственного решения и эталона.

Организация учебного процесса на этапе 6:

  • Готовы теперь проверить свои силы? (Да.)
  • Одна группа работает за компьютерами, другая на местах.
  • Из первых двух столбиков выберите один пример на сложения и один – на вычитание. Обратите внимание на запись 1-го примера 2-го столбика.
  • Какие правила записи в столбик надо помнить, чтобы избежать ошибок? (Числа записываются в столбик поразрядно, начиная с низшего разряда.)
  • С какого разряда начинаем действие? (Тоже с низшего разряда.)
  • На выполнение работы дается 2 минуты. Начинайте работу и пользуйтесь опорными схемами.
  • Опорные схемы Д–5 учитель перемещает на отдельное место доски, все внимание учащихся фиксируется на них. Такие же схемы, но меньшего размера – у учащихся на партах (Р–2).
  • Самопроверка — по эталону Д–8, расположенному на доске рядом с опорными схемами.

Обратите внимание на запись 1-го примера 2-го столбика. Что заметили? (Для удобства записи слагаемые поменяли местами.)

Рядом с каждым примером, где у вас получилось по-другому, поставьте знак «?». Выделите место расхождения красным карандашом. Где и в чем ошибка?

  • Если пример решен правильно – поставьте знак «+». Кто выполнил правильно все действия? Молодцы!
  • У кого возникли затруднения в записи столбиком? Над чем вам придется дополнительно поработать? (Над схемой и правилами решения примеров в столбик.)
  • У кого вычислительные ошибки? На что надо обратить внимание? (На схему и правила решения примеров в столбик. Еще придется вспомнить таблицы сложения из
    1-го класса.)

7. Включение нового содержания в систему знаний и повторение.

Цель:

  • тренировать способность к использованию приемов письменного сложения и вычитания многозначных чисел при решении уравнений;
  • тренировать навык составления буквенных выражений по тексту задач.

Организация учебного процесса на этапе 7.

1) Решение уравнений с использованием приемов сложения и вычитания многозначных чисел.

Мы неплохо справились с решением примеров на сложение и вычитание многозначных чисел. А где на практике можно встретиться с этими приемами? (При решении уравнений и задач.)

Попробуем применить наши знания при решении уравнений?

Один ученик работает на скрытой доске, остальные – в тетрадях. После выполнения работы сверяют записи, обсуждают работу у доски

Как убедиться в правильности решения? (Проверить.)

Выполните проверку, записывая решение в столбик.

2) – соревнование.(на выбор 3 задания: №365, №366, зад.на карточках )

Мы совсем не работали на уроке над задачами, а потренироваться надо. Как быть? (Учащиеся предлагают свои варианты выбора задач для решения.)

Давайте проведем игру-соревнование — «Блицтурнир». Я выставлю на доске таблички с выражениями. Тот, кто первый выполнит задание, выбирает нужную табличку и обосновывает решение. (Карточки Д-9)

Обоснование решения может быть, например, таким:

а) Известно, что банан стоит a руб., а ананас на b руб. дороже. Надо узнать, во сколько раз банан дешевле ананаса. Чтобы узнать, во сколько раз одна величина больше второй, надо значение большей величины надо разделить на значение меньшей величины.

Но значение большей величины неизвестно. Но его можно найти, так как по условию оно на b больше, чем a. Значит, оно равно .

Тогда для ответа на вопрос надо сумму a + b разделить на а: .

б) Известно, что c руб. можно купить 5 кг яблок. Требуется узнать, сколько рублей надо заплатить за 8 кг таких же яблок.

Задача на приведение к единице – прямая. Сначала узнаем цену 1 кг яблок:        , а потом умножим ее на количество килограммов яблок: .

(проверяем другие задачи)

Оцените свою работу с помощью знаков «+» и «?».

Обозначьте место ошибки, поработайте дополнительно над задачами такого типа.

8. Рефлексия учебной деятельности на уроке.

Цель:

  • зафиксировать новое содержание, изученное на уроке: сложение и вычитание многозначных чисел;
  • оценить результативность собственной деятельности и деятельности класса;
  • зафиксировать неразрешенные затруднения как направление будущей деятельности;
  • обсудить и записать домашнее задание.

Организация учебного процесса на этапе 8.

  • С какой проблемой мы столкнулись вначале урока? (Нам не удалось выполнить сложение и вычитание многозначных чисел.)
  • Нам удалось решить эту проблему? (Да.)
  • Как мы это сделали? (Мы стали записывать решение столбиком, используя те же приемы, что и при сложении и вычитании в столбик двузначных и трехзначных чисел.)
  • Где нам может пригодиться новое знание? (При решении примеров, задач и уравнений с многозначными числами.)
  • Учитель открывает створку доски, которую использовал на этапе 1.
  • Как вы думаете, я правильно поместила табличку на вершину Успеха? (Да, ведь мы вопрос решили.) Учитель переворачивает табличку, чтобы на ней была видна надпись: «Сложение и витание многозначных чисел».
  • Кто в конце урока согласен с высказыванием о школьной стране? Испытал успех, смог сам найти и исправить ошибки, если они появлялись, — поднимите знак
  • Прикрепите свои сигнальные карточки на вершину Успеха.
  • Дети по одному прикрепляют свои сигнальные карточки вокруг таблички с названием темы урока, в «заоблачных высотах».
  • У кого остались проблемы, кому нужно поработать дополнительно над опорной схемой или разрядным составом многозначных чисел, покажите сигнальную карточку .
  • Вспомните свои проблемные места, которые вы выделяли в заданиях, и дома потренируйтесь дополнительно.
  • Вы вместе со всеми искали выход из затруднений, объясняли решение примеров. У каждого из вас заработан хоть один значок «+». Поэтому вы тоже прикрепите свои карточки на вершину Успеха.

Домашнее задание:

 

- Спасибо за урок!

Читать еще:

Отзывы (через аккаунты в социальных сетях Вконтакте, Facebook или Google+):

Оставить отзыв с помощью аккаунта ВКонтакте:

Оставить отзыв с помощью аккаунта FaceBook:

Оставить отзыв с помощью аккаунта Google+:

Подписаться на новые статьи:


Школьные занятия:
 
Контакты Научно-популярный портал "Познание - XXI век".
111672, г. Москва, ул. Новокосинская, д. 15, корп. 7.
Для связи E-mail: . poznanie21@yandex.ru