Применение алгоритмов при обучении школьников математике : Математика

Сложившаяся в школе методическая система обучения ориентирована на возможно более высокий уровень усвоения школьником содержания предмета. Такая ориентация была довольно естественна в условиях, когда среднее образование получала наиболее подготовленная часть школьников, которые намеревались продолжить своё образование в высших учебных заведениях. Сложности возникли уже в то время и особенно обострились теперь, когда в десятые классы школы приходят ученики (от 30% до 60% общего числа десятиклассников) не только не знающие таблицу умножения, не умеющие решать простейшие уравнения типа 6х = 1, складывать обыкновенные дроби, но и просто ненавидящие математику. В этих условиях ориентация на максимум усвоения учебного материала приводит к заметной перегрузке более слабых учащихся. Они находятся в дискомфортном положении не справляющихся с учёбой; развивается чувство собственной неполноценности, которое по законам психологии требует вытеснения, поиска удовлетворения в других сферах.

Выход из этой ситуации в осуществлении дифференцированного подхода к обучению учащихся на основе явного выделения уровня математической подготовки, обязательного для каждого ученика школы. Следует иметь в виду, что ограничение требований к части учащихся связанное с ориентацией на обязательный минимум знаний, вовсе не означает ослабление учебной дисциплины или снижения требовательности к сильным учащимся. Скорее, выделение элементарного уровня овладения математическими умениями позволяет формировать умения применять известные способы и приёмы решения задач в усложнённых и новых ситуациях, а также поднимать уровень, соответствующий повышенным оценкам, естественным образом.

Работая последние года в старших классах школы, принимая учащихся из разных школ города, от разных учителей, ребят с низким темпом продвижения в обучении, испытывающих затруднения при усвоении нового материала, имеющих существенные пробелы в знаниях, я была вынуждена решать сложную педагогическую задачу: достижения всеми учениками уровня обязательных результатов обучения.

Не претендуя на решение этой неразрешимой проблемы, думаю, что можно терпимо относиться к тем пробелам в знаниях, которые непосредственно не мешают пониманию учебного материала. Если ученик твёрдо заучил формулы и алгоритмы, даже не вполне понимая их смысл, и умеет применять их при решении упражнений, то у слабых учащихся вполне можно удовлетвориться выработкой автоматизма. Это и побудила меня заняться изучением и применением на практике алгоритмизации обучения.

Под алгоритмом в педагогической психологии обычно понимают точное, общепонятное описание определённой последовательности интеллектуальных операций, необходимых и достаточных для решения любой из задач, принадлежащих некоторому классу.

Алгоритмическая деятельность может быть описана разными способами: в виде программы обычного алгоритма, в виде формулы, правила, с помощью инструкции к таблице и т. д. Каждый из них можно назвать способом задания алгоритма решения задач определённого вида. Чем же отличаются эти способы задания от обычного способа задания алгоритма в виде пошаговой задачи? Основное отличие в том, что формула, таблица, правило являются свёрнутыми, между тем, как обычная программная форма является развёрнутой. Алгоритм, заданный в виде формулы, правила и т. д., такой программы явно не представляет: она предполагается, но не дана, её ещё надо представить и вывести. В наших учебниках дают алгоритмы, как правило в свёрнутом виде, а ученик не умеет самостоятельно преобразовывать его в развёрнутый вид, единственно пригодный для решения задачи.

Так, например, формула (а + в)2 = а2 + 2ав + в2 в свёрнутом виде обозначает алгоритмом возведения в квадрат суммы двух выражений. Чтобы применить её для решения какой-либо задачи, ученик должен уметь развернуть её (устно, в уме) в алгоритм – программу:

1. Указать первое и второе выражение.

2. Найти квадрат первого выражения.

3. Найти удвоенное произведение первого и второго выражения

(можно сначала произведение, а затем удвоить)

4. Найти квадрат второго выражения.

5. Записать сумму (п. 2, 3, 4).

Можно составить программу иначе, подобно алгоритму квадрата разности двух выражений:

1. Указать первое и второе выражение

(назвать первое и второе выражение)

2. После знака равенства записать квадрат первого выражения.

3. Вычесть удвоенное произведение первого и второго выражения.

4. Прибавить квадрат второго выражения.

5. Каждое слагаемое записать в стандартном виде.

При составлении такого типа алгоритмов – программ удобнее формулы записать в виде:

Важно научить учащихся переходить от формулы, словесного правила, определения и т. д. к алгоритму – программе реализации этой формулы, правила и т. д., научить ребят строить программы по свёрнутым формам задания алгоритмов.

Обучение алгоритмам можно производить по-разному. Давать учащимся алгоритмы в готовом виде, чтобы они могли их просто заучить, а затем закрепить во время упражнений. Но можно организовать учебный процесс и так, чтобы алгоритмы “открывались” самими учащимися. Этот способ наиболее ценный в дидактическом отношении.

Психологически было замечено, что, решая какую-либо задачу с помощью алгоритма, ученик идёт одним путём. Разбирая следующее, аналогичное задание, не может выделить частный случай; в связи с этим возникает у учащихся неуверенность в своих действиях и решениях. Особое внимание поэтому необходимо обратить на изучение алгоритмов распознавания (т. е. таких алгоритмов, которые предписывают, что и как нужно делать, чтобы распознать к какому классу принадлежит данный объект).

Составляя алгоритм – программу, необходимо руководствоваться следующими принципами:

  1. Теоретический фундамент алгоритма должны составлять теоретические сведенья, имеющие непосредственное отношение к нему.
  2. Система предписаний, имея дискретный характер, должна быть общей по отношению к целому классу однородных задач.
  3. По содержанию система предписаний должна быть полной или достаточной, т. е. обеспечивать на каждом конкретном шаге учебной деятельности учащихся однозначное получение промежуточной информации, которая в своём комплексе гарантирует получение конечного результата.
  4. Система предписаний должна быть совместимой или непротиворечивой, т. е. каждое предыдущее предписание должно являться малой посылкой для последующего, а последующее – логическим следствием предыдущего.
  5. Число пунктов программы не должно быть большим. Это обеспечивает его подвижность: объединение отдельных шагов или дробление шагов на более элементарные.
  6. Система предписаний должна обеспечивать многократное решение однотипных задач, т. е. обладать свойством массовости.

Алгоритм составления уравнения касательной к графику функции.

Уравнение касательной

Алгоритм нахождения наибольшего и наименьшего значения функций.

1. Выяснить, определена ли и является ли функция непрерывной на указанном отрезке [a;b] или промежутке (а;b)
2. Найти производную функции
3. Найти критические точки (точки, в которых или не существует)
4. Выбрать критические точки принадлежащие [a;b] или (а;b)
5. Если [a;b]

Найти значение функции в критических точках (внутри отрезка) и на его концах

Если (а;b)

Определить вид экстремума в критических точках (внутри интервала) и вычислить его значение

6. Из найденных значений выбрать наибольшее и наименьшее Выбрать наибольшее и наименьшее из минимумов и максимумов функции соответственно
7. Выписать ответ

Знакомство учащихся с алгоритмами решения задач осуществляется на уроке – лекции. Многие ребята имеют отдельную тетрадь, в которую записывают предписания и образец выполнения задания. Дальнейшая отработка выполняется на практических занятиях при различных формах работы (фронтальной, групповой, индивидуальной). В целях оперативного контроля за усвоением алгоритма очень часто (каждый урок или через урок) провожу небольшие самостоятельные работы, цель которых – не выставление оценок, а выявление тех учащихся, которые что-то не поняли. Этим ребятам оказывается оперативная помощь консультантами или объясняю ещё раз, вызывая к доске. При организации работы в группах, часть учащихся получает задания, направленные на достижение обязательных результатов обучения, причём, некоторые имеют перед собой образец выполнения задания, а другие – только алгоритм, более сильные учащиеся получают задания на продвинутом уровне. На таком уроке моя работа сосредоточена на более слабых учениках, в сильной группе, как правило, всегда коллективными усилиями находят верное решение, самостоятельно применяя знания и приёмы деятельности в новой ситуации. Оценивая учащихся, не спешу выставлять оценки в журнал, всегда даю возможность получить более высокую отметку и обязательно поправить “двойку”, для этого ученик должен сделать работу над ошибками самостоятельно или с помощью консультантов (с моей помощью), а затем решить аналогичное задание на уроке.

Главное, что со временем ребята перестают бояться “двоек”, смелее задают вопросы, справляются с задачами обязательного уровня, и очень обидно, когда верно применяя алгоритм решения на контрольной работе, допускают вычислительные ошибки.

Обучение алгоритмам даёт возможность достичь обязательного уровня обучения наиболее слабым учащимся и не может привести стандартизации мышления и подавлению творческих сил детей, так как выработка различных автоматизированных действий (навыков) – необходимый компонент творческого процесса, без них он просто невозможен.

Обучение алгоритмам не сводится к их заучиванию, оно предполагает и самостоятельное открытие, построение и формирование алгоритмов, а это и есть творческий процесс. Наконец, алгоритмизация охватывает далеко не весь учебный процесс, а лишь те его компоненты, где она является целесообразной. Система алгоритмов – программ позволяет в определённой мере автоматизировать учебный процесс на этапе формирования навыков в решении типовых задач и создаёт широкие возможности для активной самостоятельной работы учащихся.

Читать еще:


Новые материалы:

Игровое домино "Чрезвычайные ситуации природного характера, типичные для Владимирской области" :: Познавательная игра "Счастливый случай" ("Хакасия! Наш отчий край") :: Экологический проект по теме: "Чистый поселок" :: Театрализованная игра-путешествие "Сказочное путешествие" (Интеллектуально-развлекательная программа) :: О стареющей информации и о том, как научить учиться (модель школы XXI века) :: По млечному пути ( On the Milky Road ), 2016 :: Дом и дача/Мебель/Мебель для кухни/Новый Год/Праздничный стол/Стулья и табуреты / Бител / Стул Ромашка ::

Отзывы (через аккаунты в социальных сетях Вконтакте, Facebook или Google+):

Оставить отзыв с помощью аккаунта ВКонтакте:

Оставить отзыв с помощью аккаунта FaceBook:

Оставить отзыв с помощью аккаунта Google+:

Поддержите сайт - подпишитесь на канал в Яндекс.Дзене!

Самое популярное:
Звуко-буквенный разбор слов

Научить детей реально оперировать звуками, т.е. развивать фонетический слух.

Состояние воздуха: Интерактивная карта загрязнения воздуха онлайн, обновляется в режиме реального времени

Экологическая карта состояния воздуха, которым мы дышим. В режиме реального времени.

Тесты для задания 7 ЕГЭ по русскому языку

Представленные тесты дают возможность учащимся приобрести практические навыки, связанные с нахождением нарушений синтаксической нормы. Умение видеть и исправлять данный вид ошибок при построении предложений позволяет не только дать правильный ответ при выполнении этого задания, но и не допускать подобных ошибок в сочинительной части экзамена.

Урок по фольклору (предмет по выбору). Тема: "Хлеб на стол и стол - престол

Представленные тесты дают возможность учащимся приобрести практические навыки, связанные с нахождением нарушений синтаксической нормы. Умение видеть и исправлять данный вид ошибок при построении предложений позволяет не только дать правильный ответ при выполнении этого задания, но и не допускать подобных ошибок в сочинительной части экзамена.

Водоемы Краснодарского края. Их использование и их охрана

Урок дает возможность сформировать представления учащихся о водоемах нашего края.

Девятая жизнь Луи Дракса (The 9th Life of Louis Drax, Великобритания, 2016) - спойлеры, пересказ, трактовка

Этот фильм заслуживает растаскивания на цитаты. "С возрастом я сам научился понимать, чего от меня хотят", "Мужчины всегда думают, что раз она красивая - значит, она хорошая" - и много другого. Вообще очень достоверный фильм в отношении психологических деталей. Рекомендую к просмотру.

Аргановое масло для волос — Уход за волосами

Этот фильм заслуживает растаскивания на цитаты. "С возрастом я сам научился понимать, чего от меня хотят", "Мужчины всегда думают, что раз она красивая - значит, она хорошая" - и много другого. Вообще очень достоверный фильм в отношении психологических деталей. Рекомендую к просмотру.


Школьные занятия:
 
Контакты Научно-популярный портал "Познание - XXI век".
111672, г. Москва, ул. Новокосинская, д. 15, корп. 7.
Для связи E-mail: . poznanie21@yandex.ru
 
ADD