Системы уравнений как математические модели реальных ситуаций : Математика

Системы уравнений как математические модели реальных ситуаций : Математика

Цели:

  • Обобщить решение задач с помощью систем уравнений различными методами.
  • Воспитывать интерес к предмету через межпредметные связи с химией и литературой, обращая внимание на аккуратность, дисциплинированность и самостоятельность.
  • Развивать устную и письменную речь, внимание и логическое мышление.

Оборудование:

  • компьютер и проектор;
  • тексты задач для решения в классе;
  • тексты задач для решения дома;

Тип урока: урок обобщения и систематизации знаний.

Подготовка к уроку: повторение способов решения задач с помощью систем уравнений различными методами.

Комментарий к уроку: использование презентации Microsoft Power Point.

Эпиграф к уроку: Учитель должен много знать, и не только свой предмет, он должен быть компетентным в разных областях. …

План урока:

  1. Организационный момент (сообщение о необходимости решения задач с помощью систем уравнений, связь темы урока с КИМами ГИА по математике).
  2. Актуализация опорных знаний (повторение методов решения систем уравнений).
  3. Закрепление материала (решение задач путем математического моделирования).
  4. Итоги урока. Домашнее задание.

Приложение 1

Слайд 1: Системы уравнений как математические модели реальных ситуаций.

Слайд 2: “Все науки настолько связаны между собою, что легче изучать их все сразу, нежели какую-либо одну из них в отдельности от всех прочих”. Рене Декарт

Слайд 3: Методы решения систем уравнений:

– подстановки;
– алгебраического сложения;
– введения новых переменных;
– графический.

Слайд 4: Алгоритм решения задачи с помощью системы уравнений:

1. Обозначить неизвестные элементы переменными;
2. Составить по условию задачи систему уравнений;
3. Определить метод решения системы уравнений;
4. Выбрать ответ, удовлетворяющий условию задачи.

Слайд 5: Этапы решения задачи:

Первый этап.
Составление математической модели.

Второй этап.
Работа с составленной моделью.

Третий этап.
Ответ на вопрос задачи.

Слайд 6: Л.Н. Толстой “Арифметика”

У двух мужиков 35 овец. У одного на 9 овец больше, чем у другого. Сколько у каждого овец?

I этап. Обозначим х – число овец у первого мужика, у – у второго.

II этап. (Решаем методом алгебраического сложения.)

IIIэтап. Ответ: 13 и 22.

Слайд 7: Илья Ильф и Евгений Петров “Двенадцать стульев”

Слайд 8: Задача: Потом отец Федор подошел к комоду и вынул из конфетной коробки 50 рублей трехрублевками и пятирублевками. В коробке оставалось еще 20 рублей.

Сколько трех- и пятирублевок отец Федор взял и сколько оставил?

Ну, а чтобы обеспечить единственность решения, добавим условие: отец Федор взял с собой большую часть трехрублевок и большую часть пятирублевок. Теперь найдите решение.

Слайд 9: Решение:

а) Пусть взято x трехрублевок и y пятирублевок
    3x+5y=50 находим пары: 5 и 7, 10 и 4, 15 и 1

б) а – осталось трехрублевок
    b – осталось пятирублевок
    3а+5b=20 находим пары: 5 и 1, 0 и 4

Значит, отец Федор взял 5 трехрублевок и 7 пятирублевок или 10 трехрублевок и 4 пятирублевок.

Слайд 10: Задачи от Н.Носова из книги “Витя Малеев школе и дома”

Слайд 11:

Задача 1.
Мальчик и девочка рвали в лесу орехи. Они сорвали всего 120 штук. Девочка сорвала в два раза меньше мальчика. Сколько орехов собрал каждый из них?

Решение:

I этап. Пусть мальчик сорвал х ор., а девочка у ор.

II этап. (Решаем методом подстановки.)

III этап. Ответ: мальчик сорвал 80 ор., а девочка сорвала 40 ор.

Слайд 12:

Задача 2.
В магазине было 8 пил, а топоров в три раза больше. Одной бригаде плотников продали половину топоров и три пилы за 84 рубля. Оставшиеся топоры и пилы продали другой бригаде плотников за 100 рублей. Сколько стоит один топор и одна пила?

Решение:

I этап. Пусть топор стоит х руб., а пила стоит у руб.

II этап. (Решаем методом алгебраического сложения.)

III этап. Ответ: топор стоит 5 руб. и пила стоит 8 руб.

Слайд 13: Задача из рассказа А.П. Чехова “Репетитор”

Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого сукна, если синее стоило 5 руб. за аршин, а черное 3 руб?

Слайд 14: Решение:

I этап.

Пусть черного сукна приобрел купец – х м и синего сукна – у м. Так как синее сукно стоит 5 руб. за 1м, а черное – 3 руб. за 1м, то составим и решим систему уравнений:

II этап. (метод подстановки)

x = 138 – y
5(138 – y) + 3y = 540
5(138 – y) + 3y = 540
690 – 5y +3y = 540
-2y = -150
y = 75            x = 138 – 75 = 63.

III этап. Ответ: 63 (аршина) – синего и 75 (аршин) – черного сукна приобрел купец.

Слайд 15:

Имеются два сплава меди со свинцом. Один сплав содержит 15% меди, а другой 65%. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

I этап: Пусть первого сплава взяли х г и второго – у г.

Слайд 16

Имеется руда из двух пластов с содержанием меди 6% и 11%. Сколько “бедной” руды надо взять, чтобы получить при смешивании с “богатой” 20 т руды с содержанием меди 8%?

Переведем проценты в дроби: 6%=0,06; 11%=0,11; 8%=0,08

I этап:
Пусть надо взять х т “бедной” руды, которая будет содержать 0,06х т меди, а “богатой” руды надо взять у т, которая будет содержать 0,11у т меди. Составим первое уравнение: х + у = 20.

Так как получившиеся 20 т руды будут содержать 20*0,08=1,6 т меди, то получим уравнение:

0,06х + 0,11у = 1,6.

II этап: (метод подстановки)

Решив систему уравнений, получим х = 12.

III этап: Ответ: 12 т руды с 6% содержанием меди

Слайд 17

Имеются сплавы золота и серебра. В одном эти металлы находятся в отношении 2: 3, а в другом в отношении 3: 7. Сколько нужно взять от каждого сплава, чтобы получить 1 кг нового, в котором золото и серебро находились бы в отношении 5: 11?

I этап: По этой схеме уравнение х + у =1 показывает массу нового сплава.

Определяем массу золота в каждом сплаве и получаем уравнение

* х + * у = * 1

Аналогично массу серебра и получаем уравнение

* х + * у = * 1

II этап: Записываем одну из систем:

х + у = 1

х + у =

х + у = 1

х + у =

Решая ее, получаем х = 0,125 и у = 0,875

III этап: Ответ: 125 г золота и 875 г серебра.

Слайд 18: Задания из тестов ГИА:

1. Найти пары чисел, являющиеся решением системы уравнений

1) (1; 6); (6; 1) 2) (6; 1); (?0, 5; ?12)

3) (1; 6); (?12;?0, 5) 4) (6; 1); (?1; ?6)

Слайд 19:
2.
Прямая y=2x-3 пересекает параболу y=x2-x-7 в двух точках.
Вычислите координаты точки B.

Слайд 20:
3. Вычислите координаты точки B.

Слайд 21:
Домашнее
задание

Задачник под ред. Мордковича А.Г. №7.37, 7.40 и 7.53)

Спасибо всем за урок! Удачи! И помните: “Учение без размышления бесполезно, но и размышление без учения опасно”. (Конфуций.)

Читать еще:


Новые материалы:

Урок-размышление по рассказу В.Распутина "Рудольфио" :: Урок литературы в 6-м классе "Дорога к счастью" по пьесе М.Метерлинка "Синяя птица" :: Урок-игра "Счастливый случай" по творчеству С.Есенина :: Урок по литературе по теме «Нравственные проблемы рассказа В.Г. Распутина "Уроки французкого"» (6-й класс, программа Коровиной В.Я) :: Построение графика функции в различных средах :: Голем ( The Limehouse Golem ), 2016 :: Дом и дача/Мебель/Столы и стулья/Банкетки и скамьи/Мебель/Прихожие/Банкетки, Пуфы, Сундуки/Банкетки / DG-Home / Банкетка Remy Ottoman DG-F-TAB73 ::

Отзывы (через аккаунты в социальных сетях Вконтакте, Facebook или Google+):

Оставить отзыв с помощью аккаунта ВКонтакте:

Оставить отзыв с помощью аккаунта FaceBook:

Оставить отзыв с помощью аккаунта Google+:

Поддержите сайт - подпишитесь на канал в Яндекс.Дзене!

Самое популярное:
Состояние воздуха: Карта загрязнения воздуха онлайн, обновляется в режиме реального времени

Экологическая карта состояния воздуха, которым мы дышим. В режиме реального времени.

Костя Цзю прооперирован после инфаркта. 48 лет, абсолютный чемпион мира среди профи.

Вот это да. Возраст еще не старый, вес - 63 кг, легче не бывает, здоровье - железное... С чего вдруг?

Звуко-буквенный разбор слов

Научить детей реально оперировать звуками, т.е. развивать фонетический слух.

Итоговая контрольная работа по органической химии. 9-й класс

Контрольная работа предназначена для итогового контроля знаний обучающихся 9-го класса по органической химии. В 9-м классе ученики знакомятся с основами органической химии, получают первичные знания о органических веществах и их свойствах. Знания по данной теме содержатся в экзаменационных заданиях. Работа включает тестовую часть и часть, требующую навыков составления формул гомологов и изомеров. Данные навыки пригодятся обучающимся при изучении органической химии 10-м классе.

Автор решающей шайбы Олимпиады-2018 не забыл своего первого тренера. И подарил ему автомобиль!

Подарок в тайне от тренера доставили прямо на ледовую арену к началу рабочего дня.

Урок литературного чтения Л.Пантелеев. "Камилл и учитель" УМК Н.Ф. Виноградовой "Начальная школа XXI века"

На уроках литературного чтения закладываются основы духовности и нравственности, решаются вопросы человековедческого характера. В предлагаемом уроке идёт работа над понятиями добра и зла, предательства и героизма, сопоставляются произведения одного автора, разные типы рассказов: художественный и исторический. Это урок действия, где дети овладевают основными видами чтения: ознакомительным, изучающим, просмотровым и поисковым.


Школьные занятия:
 
Контакты Научно-популярный портал "Познание - XXI век".
111672, г. Москва, ул. Новокосинская, д. 15, корп. 7.
Для связи E-mail: . poznanie21@yandex.ru
 
ADD