Сложные проценты в ЕГЭ. 10–11-е классы : Математика

«Хороший учитель обязан понимать, что никакую задачу нельзя исчерпать до конца. Этот взгляд он должен прививать и своим ученикам».
Д. Пойа.

Введение.

Особое внимание я уделяю текстовым задачам на проценты, которые часто встречаются в практике вступительных экзаменов в экономические вузы, но недостаточно полно рассматриваются в школе. Умение выполнять процентные вычисления, − безусловно, одна из самых необходимых математических компетенций. Однако не только те, кто уже давно окончили школу, робеют при виде процентов. Даже на ЕГЭ решаемость задач на проценты не превышает 20 % . Это говорит о том, что такого типа задачи следует решать не только в младших классах, где изучается эта тема, но и на протяжении всех лет обучения в школе.

1. При решении задач на проценты используются основные формулы:

1% числа а равен а.

р% от числа а равно  а.

Если известно, что некоторое число а составляет р% от х, то х можно найти из пропорции

а   − р%

х   − 100%,

откуда х= а.

Пусть имеются числа a, b, причем а

Число b больше числа а на100%.

Число а меньше числаbна100%.

2. Формула сложных процентов.

Если на вклад положена сумма а денежных единиц, банк начисляет р% годовых, то через n лет сумма на вкладе составит

aден.ед.

3. Задачи на проценты.

Задача 1.

Умных людей на 45 % меньше, чем красивых, 36% умных обладают красивой внешностью. Каков процент умных людей среди красивых?

Решение: пусть х − количество красивых людей, тогда количество умных людей:

х − 0,45х = 0,55х.

Среди умных 36% составляют красивые люди, следовательно, количество умных и одновременно красивых людей:

0,36 ·0,55х= 0,198х.

Составим пропорцию:

х −  100%

0,198х −  а%.

Отсюда получим:

а = 19,8%.

Ответ: 19,8%

Учащиеся с интересом решают текстовые задачи на проценты, которые ближе к реальной жизни. Особый «прикол» представляет собой подача задач не из задачника, а прямо с газетной полосы. Тут уж не возникает мыслей о ненужности математики. А «процентная журналистика» в связи с разразившимся экономическим кризисом на страницах газет буквально процветает.

Задача 2.

Цены на путевки уже подросли: например, туры во Францию − на 20%. Можно ли сказать, на сколько процентов раньше тур во Францию был дешевле?

Решение: пусть х − старая цена, а n − новая цена.

1) Составим первую пропорцию:

х −  100%

n − 120%,

Получим n=1,2х.

2) Составим вторую пропорцию:

1,2х − 100%

х − (100-а%)

(100-а) 1,2х = 100х

Решив уравнение, получим: а ≈17%.

Ответ:17%.

4. Использование формулы сложных процентов.

Задача 3.

На банковский счет было положено 10 тыс. руб. После того, как деньги пролежали один год, со счета сняли 1 тыс. руб. Еще через год на счету стало 11 тыс. руб. Определите, какой процент годовых начисляет банк.

Решение: пусть банк начисляет р% годовых.

1) Сумма в 10000 рублей, положенная на банковский под р% годовых, через год возрастет до величины

10000+

2) Когда со счета снимут 1000 руб., там останется 9000+100р руб.

3) Еще через год последняя величина за счет начисления процентов возрастет до величины

9000+100р+

По условию эта величина равна 11000:

Решив это уравнение получим: =10, =−200 − отрицательный корень не подходит.

Ответ:10%

Задача 4. (ЕГЭ-2015)

Банк под определенный процент принял некоторую сумму. Через год четверть накопленной суммы была снята со счета. Но банк увеличил процент годовых на 40%. К концу следующего года накоплена сумма в 1,44 раза превысила первоначальный вклад. Каков процент новых годовых?

Решение: от суммы вклада ситуация не изменится. Положим в банк 4 рубля (делится на 4). Через год сумма на счету увеличится ровно в p раз и станет равной (4p) рублей.

Поделим её на 4 части, унесём домой (p) рублей, оставим в банке (3p) рублей.

Известно, что к концу следующего года в банке оказалось 4·1,44 = 5,76 рублей. Итак, число (3p) превратилось в число (5,76). Во сколько раз оно увеличилось?

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?k=rac%7b5,76%7d%7b3p%7d=rac%7b1,92%7d%7bp%7d

Таким образом, найден второй повышающий коэффициент k банка.

Интересно, что произведение обоих коэффициентов равно 1,92:

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7bp%7d\cdot%7bk%7d=%7bp%7d\cdot%7brac%7b1,92%7d%7bp%7d%7d=1,92

Из условия следует, что второй коэффициент на 0,4 больше первого.

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7bp%7d\cdot%7b(p+0,4)%7d=1,92

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7b10p%7d\cdot%7b(10p+4)%7d=192

Избавившись от запятых, сделаем замену t = 10р:

 http://www.egetrener.ru/cgi-bin/mimetex.cgi?%7bt%7d\cdot%7b(t+4)%7d=192

Из такого уравнения получить 12 совсем просто.

Итак, p = 1,2, k = 1,6.

В 1,2 раза увеличилась сумма вклада первый раз, в 1,6 раз - во второй раз.

Было 100%, стало 160%. Новый процент годовых равен 160%-100% = 60%.

Ответ: 60%.

Задача 5. (ЕГЭ-2015)

В банк помещена сумма 3900 тысяч рублей под 50% годовых. В конце каждого из первых четырех лет хранения после вычисления процентов вкладчик дополнительно вносил на счет одну и ту же фиксированную сумму. К концу пятого года после начисления процентов оказалось, что 

размер вклада увеличился по сравнению с первоначальным на 725%

Какую сумму вкладчик ежегодно добавлял к вкладу?

Решение: пусть х рублей – вкладчик ежегодно добавлял ко вкладу.

50% годовых означает, что каждый год сумма на счету вкладчика увеличивается в 1,5 раза. Если вкладчик ничего бы не добавлял к первоначальной сумме, то через год на его счету было бы 3900·1,5, через два года - 3900·1,52 и так далее.

 Посчитаем, какой доход принесли все четыре добавки.

х∙1,54 + х∙1,53 + х∙1,52 +х∙1,5

Для этого вынесем х за скобку и вычислим сумму геометрической прогрессии, в которой b = 1,5 и q = 1,5.

Известно, что размер вклада увеличился по сравнению с первоначальным на 725%

Это значит, что он стал составлять 825% от начального, т.е. увеличился в 8,25 раз.

Сумма всех слагаемых последнего столбика в 8,25 раз больше, чем 3900 тыс.руб.

http://www.egetrener.ru/cgi-bin/mimetex.cgi?3900\cdot%7b1,5%5e5%7d+rac%7b%7b%7b3x%7d\cdot65%7d%7d%7b2%5e4%7d=3900\cdot%7b8,25%7d

http://www.egetrener.ru/cgi-bin/mimetex.cgi?rac%7b%7b%7b3x%7d\cdot65%7d%7d%7b2%5e4%7d=3900\cdot%7b8,25%7d-3900\cdot%7b1,5%5e5%7d

http://www.egetrener.ru/cgi-bin/mimetex.cgi?rac%7b%7b%7bx%7d\cdot65%7d%7d%7b2%5e4%7d=1300\cdot(%7brac%7b33%7d%7b4%7d-rac%7b3%5e5%7d%7b2%5e5%7d%7d)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?rac%7bx%7d%7b2%5e4%7d=20\cdot(%7brac%7b33%7d%7b4%7d-rac%7b3%5e5%7d%7b2%5e5%7d%7d)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?rac%7bx%7d%7b2%5e4%7d=10\cdot(rac%7b33%7d%7b2%7d-rac%7b3%5e5%7d%7b2%5e4%7d)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=10\cdot(33\cdot%7b2%5e3%7d-3%5e5)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=10\cdot3(11\cdot%7b2%5e3%7d-3%5e4)

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=10\cdot3\cdot7

http://www.egetrener.ru/cgi-bin/mimetex.cgi?x=210

Ответ: 210 тысяч рублей.

5. Литература.

  1. С.Я. Криволапов. Пособие по математике для абитуриентов. М., 2004.
  2. Математика в школе. №6, 2009.
  3. Типовые варианты ЕГЭ-2015.
Читать еще:


Новые материалы:

Игра "Путешествие в мир химии" :: Урок химии по теме "Углеводы". 10-й класс :: Практические работы по химии. 8-й класс :: Применение основных соединений кальция – вчера, сегодня, завтра :: Урок химии по теме "Фосфор и его соединения" :: Смолфут ( Smallfoot ), 2018 :: Компьютерная техника/Аксессуары/Аксессуары и запчасти для ноутбуков/Подставки и столы/Мебель/Столы/Компьютерные столы/Прямые столы / Merdes / Стол компьютерный Домино СП-22 ::

Отзывы (через аккаунты в социальных сетях Вконтакте, Facebook или Google+):

Оставить отзыв с помощью аккаунта ВКонтакте:

Оставить отзыв с помощью аккаунта FaceBook:

Самое популярное:
Звуко-буквенный разбор слов : Начальная школа - Хелси и Смарт

Научить детей реально оперировать звуками, т.е. развивать фонетический слух.

Тесты для задания 7 ЕГЭ по русскому языку : Русский язык

Представленные тесты дают возможность учащимся приобрести практические навыки, связанные с нахождением нарушений синтаксической нормы. Умение видеть и исправлять данный вид ошибок при построении предложений позволяет не только дать правильный ответ при выполнении этого задания, но и не допускать подобных ошибок в сочинительной части экзамена.

Интерактивная карта загрязнения воздуха онлайн, обновляется в режиме реального времени

Экологическая карта загрязнения воздуха, которым мы дышим. В режиме реального времени.

Тестовые задания по экологии : Экология

Тестовые задания предназначены для проверки и закрепления знаний учащихся 8–11-х классов по курсу «Основы экологии». Данные тесты дают возможность быстро и объективно организовать проверку знаний учащихся по разделам «Основы экологии», «Учение о биосфере», «Экология популяций», «Взаимоотношения организмов», «Экология экосистем».

Карта ветров и загрязнения воздуха в режиме реального времени

Пока сайт Мосэкомониторинга никак не откроется вновь, предлагаю посмотреть на глобальную карту ветров с данными загрязненности воздуха диоксидом серы, предоставляемую NASA. Эта карта настолько завораживает, что на нее можно смотреть вечно.

Школьные занятия:
 
Контакты Научно-популярный портал "Познание - XXI век".
111672, г. Москва, ул. Новокосинская, д. 15, корп. 7.
Для связи E-mail: . spieler@detishka.ru
 
ADD